点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:y39彩票代理 - y39彩票必赚方案
首页>文化频道>要闻>正文

y39彩票代理 - y39彩票必赚方案

来源:y39彩票开户2023-04-02 17:48

  

y39彩票代理

南湖革命纪念馆:传承红色基因 守好红色根脉******

  2002年10月22日,习近平同志到浙江履新的第11天,就来到嘉兴考察,并视察南湖、瞻仰红船。此后,他又多次到嘉兴考察,瞻仰红船、参观南湖革命纪念馆。特别是2017年10月31日,习近平总书记带领第十九届中央政治局常委集体瞻仰南湖红船、参观南湖革命纪念馆并发表重要讲话,为嘉兴继承光荣传统、赓续红色血脉指明了方向、提供了根本遵循。

  南湖革命纪念馆作为中国革命红船起航地纪念馆、红色根脉所在地,把学习宣传贯彻党的二十大精神作为当前和今后一个时期的首要政治任务和头等大事,把坚定自觉地用党的二十大精神统一思想和行动摆在最突出位置,在学深悟透上做表率,在宣传宣讲上增氛围,在贯彻落实上见成效,推动党的二十大精神深度融入党性教育。

南湖革命纪念馆:传承红色基因 守好红色根脉  

南湖革命纪念馆基本陈列序厅 南湖革命纪念馆供图

  早在2004年3月,时任浙江省委书记的习近平同志专程就统筹城乡发展、推进城乡一体化到嘉兴开展调研,认为嘉兴完全有条件成为浙江省乃至全国统筹城乡发展的典范,并在深入调研考察基础上,主持召开浙江省统筹城乡发展、推进城乡一体化工作座谈会。随后,嘉兴制定了城乡一体化发展规划纲要,成为全国首个提出此类纲要的地级市。

  党的二十大报告提出“三个务必”,其中强调全党同志务必不忘初心、牢记使命。这是新征程上弘扬伟大建党精神、传承“红船精神”的具体体现,更是新时代践行以伟大建党精神为源头的中国共产党人精神谱系的切实行动。南湖革命纪念馆立足红色根脉重要标识,弘扬伟大建党精神、传承“红船精神”,发挥思想政治工作传家宝和生命线作用,进一步挖掘展示红色资源的思想内涵和时代价值,强化党性教育功能,强化党的创建史和习近平新时代中国特色社会主义思想的研究阐释,围绕革命、建设、改革各个历史时期的重大事件,充分发挥红色文化的引领作用,教育引导广大干部群众坚持以习近平新时代中国特色社会主义思想为指导,进一步提高政治站位、健全工作机制、强化工作措施,真正让红色基因融入血液、融入品格、融入时代,从而在用好红色资源中守好红色根脉。

  南湖革命纪念馆作为初心之地纪念馆,努力筑牢学习宣传实践习近平新时代中国特色社会主义思想的阵地,健全党史学习教育长效机制。他们通过聚焦“初心使命”“伟大建党精神”“红船精神”,加强红色资源的系统研究研讨,夯实基础性研究,用好“红船起航”主题展这个主阵地和红色资源宝库。

  依托丰富生动的红色资源,南湖革命纪念馆创新服务思政课程的宣讲载体,组织全体宣讲员集体备课,并通过系统学习和深入交流,在学深悟透党的二十大报告的基础上打磨形成了系列精品党课,开展“七进”宣讲活动,打好具有辨识度、影响力的学习宣传贯彻党的二十大精神的组合拳。始终把“守好红色根脉,当好红船卫士”作为使命和担当,时刻牢记习近平总书记的殷殷嘱托,加强红船的科学管理保护,秉承“两年一大修,一年一小修”原则,确保其完好如初。通过编织陆地、水面、水下和空中的立体防护体系,联合公安、消防等部门设立24小时护卫岗,启动联动保护机制,全方位无死角筑牢红船防护线。几十年来,红船始终以其固有的平静和博大接受着人们的瞻仰,向每一位到访者讲述着中国共产党诞生的那段伟大历史。

  围绕习近平新时代中国特色社会主义思想和党的二十大精神,南湖革命纪念馆面向党员干部群体,坚持问题导向,持续深化“六个一”主题教育,把理想信念教育贯穿在“六个一”主题教育中,发挥南湖革命纪念地独特优势,不断创新宣讲手段和方式方法。通过开设“红船大课堂”“南湖水上课堂”,不断拓展“六个一”教学阵地;挖掘红船故事、“红船精神”,不断创新“六个一”教学内容;开发“重走一大路”体验式党性教育项目,不断创新“六个一”教学形式,进一步将“六个一”主题教育活动打造成为弘扬“伟大建党精神”“红船精神”、不忘初心使命的精品课程。(徐继宏)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 十年漫威复仇者带给我们什么

  • 首付260万北京买哪合适

独家策划

推荐阅读
y39彩票骗局神奇伙伴在哪里 2018-10-21 期
2024-05-16
y39彩票计划群心理:本来爱那个人,可是对方的亲朋好友提了些要求,就不想爱了
2024-05-08
y39彩票官方网站一对“毒鸳鸯”被查秒变戏精 称“吸毒为了国家”
2023-12-08
y39彩票手机版APP超期待 杨紫琼加盟《阿凡达》续集
2023-12-03
y39彩票app下载凤凰周刊:如果不靠高考,你该如何体面地出人头..
2024-08-30
y39彩票登录火箭又破季后赛历史纪录
2024-05-18
y39彩票交流群《往日不再》1.05更新修复bug
2024-09-17
y39彩票平台北京已建50余家跨境电商体验店,今年再增10家
2024-10-13
y39彩票客户端下载商务部核减直销产品四成以上 为消费者挽回损失超1亿
2024-04-25
y39彩票技巧《机动战士高达》与VAN JACKET联动服装发售决定
2024-07-17
y39彩票APP股票发行注册制将正式在全市场推开 证监会答问
2024-06-17
y39彩票计划 官员:斯里兰卡或发生新恐袭 袭击者或为女性
2024-07-31
y39彩票官网平台别再问该不该炒股还是该买房了!紧跟...
2024-07-23
y39彩票开奖结果 海南HPV疫苗涉案人被曝欲与消费者和解 协议书曝光(图)
2024-09-29
y39彩票规则大陆航空主管部门已促请台方恢复两岸直航航点
2024-04-24
y39彩票软件拆客Now拆解Reno 10倍变焦版
2024-03-19
y39彩票官方 不可错过的大展 呈现雕塑里的民族风俗
2024-10-05
y39彩票网投王健林:大连足球必重返亚洲一流 正建专业足球场
2024-09-15
y39彩票注册四川宜宾长江暴雨后现“金岷分明”奇观
2024-09-03
y39彩票官网沈梦辰杜海涛疑似拍婚纱
2023-12-09
y39彩票漏洞五个要素教你跑步不伤身
2024-07-10
y39彩票手机版贾静雯:《我们与恶的距离》
2024-07-24
y39彩票充值一线|OYO与支付宝达成战略合作 将全面接入支付宝小程序
2024-06-17
y39彩票赔率宋文帝刘义隆被亲生儿所杀
2024-02-24
加载更多
y39彩票地图